APLICAÇÃO DE CIÊNCIA DE DADOS PARA CENTROS CIRÚRGICOS: REVISÃO NARRATIVA
Keywords:
Administração Hospitalar, Centro Cirúrgico, Ciência de DadosAbstract
This article aimed to review the use of data science in healthcare to support the management of surgical centers, seeking to understand how this science can improve the quality of interventional healthcare through data capture, organization, analysis, and modeling. This is a narrative review of the literature, in which the usefulness and objectivity of the application of data science in surgical centers were investigated, with a focus on improving surgical procedures. The articles were analyzed regarding the application of SDS (Surgical Data Science), emphasizing the stages of training, feedback, evaluation, and decision support in surgery. Twelve articles were selected, and only five directly mentioned the use of these data to improve procedures and processes in interventional healthcare. The application of data science in surgical centers has the potential to improve processes and procedures in interventional healthcare. However, the difficulty in obtaining these data should be considered.
References
August, A. T., Sheth, K., Brandt, A., deRuijter, V., Fuerch, J. H., & Wall, J. (2022). The value of surgical data—impact on the future of the surgical field. Surgical innovation, 29(1), 98-102.
Derathé, A., Reche, F., Jannin, P., Moreau-Gaudry, A., Gibaud, B., & Voros, S. (2021). Explaining a model predicting quality of surgical practice: a first presentation to and review by clinical experts. International Journal of Computer Assisted Radiology and Surgery.
Eckhoff, J. A., & Meireles, O. (2023). A Inteligência Artificial poderia guiar as mãos dos cirurgiões? Revista do Colégio Brasileiro de Cirurgiões, 50, e20233696EDIT01.
Kehlet, H., & Wilmore, D. W. (2008). Evidence-based surgical care and the evolution of fast-track surgery. Annals of surgery, 248(2), 189-198.
Lisacek-Kiosoglous, A. B., Powling, A. S., Fontalis, A., Gabr, A., Mazomenos, E., & Haddad, F. S. (2023). Artificial intelligence in orthopaedic surgery. Bone Joint Research, 12(7), 447–454.
Lukaszewski, M., Lukaszewski, R., Kosiorowska, K., & Jasinski, M. (2019). The use of data science to analyse physiology of oxygen delivery in the extracorporeal circulation. BMC Cardiovascular Disorders, 19, Article 292.
Mack, M. J., Scruggs, G. R., Shennib, H., & Landreneau, R. J. (1997). Video-assisted thoracic surgery: has technology found its place?. The Annals of thoracic surgery, 64(1), 211-215.
Maier-Hein, L., Eisenmann, M., Feldmann, C., Feussner, H., Forestier, G., Giannarou, S., & Vedula, S. S. (2018). Surgical data science: A consensus perspective. arXiv preprint arXiv:1806.03184.
Maier-Hein, L., Eisenmann, M., Sarikaya, D., März, K., Collins, T., Malpani, A. & Speidel, S. (2022). Surgical data science–from concepts toward clinical translation. Medical image analysis, 76, 102306.
Maier-Hein, L., Eisenmann, M., Sarikaya, D., März, K., Collins, T., Malpani, A., & Speidel, S. (2022). Surgical data science–from concepts toward clinical translation. Medical image analysis, 76, 102306.
Maier-Hein, L., Vedula, S. S., Speidel, S., Navab, N., Kikinis, R., Park, A., & Jannin, P. (2017). Surgical data science for next-generation interventions. Nature Biomedical Engineering, 1(9), 691-696.
Maier-Hein, L., Vedula, S., Speidel, S., Navab, N., Kikinis, R., Park, A. & Jannin, P. (2017). Surgical data science: enabling next-generation surgery. arXiv preprint arXiv:1701.06482.
Netto, A. V. (2021). Ciência de dados em saúde: contribuições e tendências para aplicações. saude.com, 17(3), 2249-2253.
Park, J. J., Tiefenbach, J., & Demetriades, A. K. (2022). The role of artificial intelligence in surgical simulation. Frontiers in Medical Technology, 4, 1076755.
Raghupathi, W., & Raghupathi, V. (2014). Big data analytics in healthcare: promise and potential. Health information science and systems, 2, 1-10.
Salati, M., Migliorelli, L., Moccia, S., Andolfi, M., Roncon, A., Guiducci, G. M., & Refai, M. (2021). A Machine Learning Approach for Postoperative Outcome Prediction: Surgical Data Science Application in a Thoracic Surgery Setting. World J Surg, 45, 1585-1594.
Solanki, S. L., Pandrowala, S., Nayak, A., Bhandare, M., Ambulkar, R. P., & Shrikhande, S. V. (2021). Artificial intelligence in perioperative management of major gastrointestinal surgeries. World Journal of Gastroenterology, 27(21), 2758-2770.
Stahl, J. E., Egan, M. T., Goldman, J. M., Tenney, D., Wiklund, R. A., Sandberg, W. S., Gazelle, S., & Rattner, D. W. (2005). Introducing new technology into the operating room: Measuring the impact on job performance and satisfaction. Surgery, 137(5), 518-526.
Stamos, M. J., & Brady, M. T. (2018). Anastomotic leak: are we closer to eliminating its occurrence?. Annals of Laparoscopic and Endoscopic Surgery, 3(8).
Valerio Netto, A., Berton, L., & Takahata, A. K. (2021). Ciência de Dados e a Inteligência Artificial na Área da Saúde. Editora dos Editores.
Varas, J., Valencia Coronel, B., Villagrán, I., Escalona, G., Hernandez, R., Schuit, G., & Achurra, P. (2023). Innovations in surgical training: Exploring the role of artificial intelligence and large language models (LLM). Revista do Colégio Brasileiro de Cirurgiões, 50, e20233605.
Vedula, S. S., Ishii, M., & Hager, G. D. (2016). Perspectives on surgical data science. arXiv preprint arXiv:1610.04276.
Wall, J., & Krummel, T. (2020). The digital surgeon: How big data, automation, and artificial intelligence will change surgical practice. Journal of pediatric surgery, 55, 47-50.
Zhou, X. Y., Guo, Y., Shen, M., & Yang, G.-Z. (2020). Artificial Intelligence in Surgery. Frontiers of Medicine, 14(4), 417-430.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Antonio Valerio Netto, GABRIEL MORENO MARQUES DOS SANTOS
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A responsabilidade do conteúdo publicado são dos autores do artigo submetido.